The ionization energy of metastable ³He and ⁴He (2 ³S₁) and the alpha- and helion-particle charge-radius difference from precision spectroscopy of the np Rydberg series

Gloria Clausen¹ and Frédéric Merkt^{1, †},

¹Institute of Molecular Physical Science, ETH Zurich †corresponding author's email: frederic.merkt@phys.chem.ethz.ch

The comparison of calculated and experimental energy intervals in He represents an attractive route to test the fundamental theory of two-electron systems and to determine physical constants and particle properties such as the charge radii of the helion $({}^{3}\text{He}^{2+})$ and alpha $({}^{4}\text{He}^{2+})$ particles. This route is, however, currently blocked by discrepancies between experimental and theoretical results in this fundamental atomic system. In particular, calculated and measured values of the transition frequencies from the 2 ${}^{3}S_{1}$ metastable and the 2 ${}^{3}P_{0}$ states of ${}^{4}\text{He}$ to the 3 ${}^{3}D_{1}$ state differ by more than 10σ [1, 2, 3] and experimental and theoretical values of the ionization frequency of the 2 ${}^{3}S_{1}$ and 2 ${}^{1}S_{0}$ metastable states of ${}^{4}\text{He}$ differ by 9σ [1, 4, 5]. Moreover, recently reported ${}^{3}\text{He}^{2+}$ and ${}^{4}\text{He}^{2+}$ squared-charge-radii differences obtained by combining theory and precision spectroscopy for 2 ${}^{2}P \leftarrow 2 {}^{2}S$ transitions in muonic He⁺ ions [6] and for the isotopic shift of the 2 ${}^{3}S_{1} \leftarrow 2 {}^{1}S_{0}$ transition [7] in He deviate by 3.6 σ . Recent progress in the theoretical treatment of singlet-triplet mixing in ${}^{3}\text{He}$ might resolve this discrepancy [8, 9].

In this talk, we present an improved experimental method for the determination of the ionization energy of the $2^{3}S_{1}$ state of ⁴He via the measurement of transitions from the $2^{3}S_{1}$ state to *n*p Rydberg states. The upgrades to our experiment include (i) the preparation of a cold, supersonic expansion of helium atoms in the $2^{3}S_{1}$ state, (ii) the development of a laser system with SI-traceable frequency calibration for driving the transitions to *n*p Rydberg states, (iii) the implementation of a sub-Doppler, background-free detection method [10], and (iv) an interferometric alignment procedure for counter-propagating laser beams to cancel the 1st-order Doppler shifts [5]. We illustrate the power of this method with a new determination of the ionization energy of $2^{3}S_{1}$ metastable ⁴He [$E_{I}(^{4}He)/h = 1152\,842\,742.7082(55)_{stat}(25)_{sys}$ MHz] with a fractional uncertainty of $4 \cdot 10^{-12}$ by extrapolation of the *n*p series.

These measurements were recently extended to precision measurements of hyperfine-resolved transitions from the 2 ${}^{3}S_{1}$ metastable state of 3 He to high *np* Rydberg states converging on the $F^{+} = 0$, 1 hyperfine levels of the 3 He⁺ 1s ${}^{2}S_{1/2}$ ground state. Rydberg-series extrapolation using multichannel quantum-defect theory (MQDT) enabled the determination of the ionization energy of the 2 ${}^{3}S_{1}$ state of 3 He [$E_{I}({}^{3}$ He)/h = 1 152 788 844.6154(77)_{stat}(25)_{sys} MHz] and of the corresponding isotopic shift [($E_{I}({}^{4}$ He) – $E_{I}({}^{3}$ He))/h = 53 898.093(9) MHz]. The MQDT analysis also permitted the quantification of singlet-triplet mixing in the *np* series induced by the hyperfine interaction. From the isotopic shift of the ionization energy of He, the difference δr^{2} between the squared charge-radii of the helion and alpha particles was determined to be 1.060(10) fm².

References

- [1] V. Patkóš et al., Phys. Rev. A. 103, 042809 (2021)
- [2] C. Dorrer et al., Phys. Rev. Lett. 78, 3658 (1997).
- [3] P.-L. Luo et al., Phys. Rev. A. 94, 062507 (2016).
- [4] G. Clausen et al., Phys. Rev. Lett. 127, 093001 (2021).
- [5] G. Clausen et al., Phys. Rev. A 111, 012817 (2025).
- [6] The Crema collaboration, K. Schuhmann et al., arXiv:2305.11679 (2023).
- [7] Y. van der Werf et al., arXiv:2306.02333 (2023).
- [8] X-Q. Qi et al., arXiv:2409.09279 (2024).
- [9] K. Pachucki et al., Phys. Rev. A 110, 062806 (2024).
- [10] G. Clausen et al., Phys. Rev. Lett. 131, 103001 (2023).