Spin-dependent exotic interactions

Lei Cong^{1,2,3,4, †,*}, Wei Ji^{1,2,3,5, †,*}, Pavel Fadeev³, Filip Ficek^{6,7}, Min Jiang^{8,9}, Victor V. Flambaum¹⁰, Haosen Guan¹¹, Derek F. Jackson Kimball¹², Mikhail G. Kozlov[®], Yevgeny V. Stadnik¹³, Dmitry Budker^{1,2,3,14}

¹Helmholtz Institute Mainz, 55099 Mainz, Germany ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ³Johannes Gutenberg University, Mainz 55128, Germany ⁴International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai University, 200444 Shanghai, China ⁵School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China. ⁶Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria ⁷Gravitational Physics Group, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria ⁸CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China ⁹CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China ¹⁰School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia ¹¹University of Science and Technology of China, Hefei, Anhui 230026, China ¹²Department of Physics, California State University – East Bay, Hayward, California 94542-3084, USA ¹³School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia ¹⁴Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA *†*corresponding author's email: congllzu@gmail.com; wei.ji.physics@gmail.com; * Equal contribution.

Novel interactions beyond the four known fundamental forces in nature (electromagnetic, gravitational, strong and weak interactions), may arise due to "new physics" beyond the standard model, manifesting as a "fifth force". This review is focused on spin-dependent fifth forces [1] mediated by exotic bosons such as spin-0 axions and axionlike particles and spin-1 Z' bosons, dark photons, or paraphotons. Many of these exotic bosons are candidates to explain the nature of dark matter and dark energy, and their interactions may violate fundamental symmetries. Spin-dependent interactions between fermions mediated by the exchange of exotic bosons have been investigated in a variety of experiments, particularly at the low-energy frontier. Experimental methods and tools used to search for exotic spin-dependent interactions, such as atomic comagnetometers, torsion balances, nitrogen-vacancy spin sensors, and precision atomic and molecular spectroscopy, are described. A complete set of interaction potentials, derived based on quantum field theory with minimal assumptions and characterized in terms of reduced coupling constants, are presented. A comprehensive summary of existing experimental and observational constraints on exotic spin-dependent interactions is given, illustrating the current research landscape and promising directions of further research.

References

 L. Cong, W. Ji, P. Fadeev, F. Ficek, M. Jiang, V. V. Flambaum, H.S. Guan, D. F. Jackson Kimball, M. G. Kozlov, Y. V. Stadnik, D. Budker. Spin-dependent exotic interactions, arXiv:2408.15691 (2024).